feature of the internal motion is that the angles which are altered are those which are already distorted from the ideal configuration, and particularly C(5)-C(6)-C(11). This is consistent with the well known lability of the cyclopentane ring system, compared with that of cyclohexane. In the former the bond angles are considerably greater than the ideal tetrahedral value. Since in such distorted configurations steric forces must be acting in opposition to those resulting from the less than ideal orbital overlap some degree of lability is not unexpected.

References

- BARTELL, L. S. & BOATES, T. L. (1966). Acta Cryst. 21, A103.
- BASTIANSEN, O., HEDBERG, L. & HEDBERG, K. (1957). J. Chem. Phys. 27, 1311.
- BIRCH, A. J., GRIMSHAW, J. & TURNBULL, J. P. (1963). J. Chem. Soc. p. 2412.
- COCHRAN, W. (1955). Acta Cryst. 8, 473.
- COLE, A. R. H., MOHAY, G. M. & OSBORNE, G. A. (1966). Spectrochim. Acta. A 23, 909.
- CRAVEN, B. M. (1962). Acta Cryst. 15, 387.

- DEWAR, M. J. S. (1962). Hyperconjugation. New York: Ronald Press.
- HALL, S. R. & MASLEN, E. N. (1965). Acta Cryst. 18, 265.
- HAMILTON, W. C., ROLLETT, J. S. & SPARKS, R. A. (1965). Acta Cryst. 18, 129.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- JEFFERIES, P. R., KNOX, J. R. & MIDDLETON, E. J. (1962). Aust. J. Chem. 15, 532.
- JEFFERIES, P. R. & MIDDLETON, E. J. (1964). Private communication.
- KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635.
- KARLE, J. & KARLE, I. L. (1964). Acta Cryst. 17, 835.
- KEMPTER, C. P. & ELLIOTT, R. O. (1959). J. Chem. Phys. 30, 1524.
- LIDE, D. R. (1962). Tetrahedron 17, 125.
- LIDE, D. R., TAFT, R. W. & LOVE, P. (1959). J. Chem. Phys. 31, 561.
- LIPSON, H. & COCHRAN, W. (1966). The Determination of Crystal Structures. London: Bell.
- MACDONALD, S. G. G. & ALLEYNE, A. B. (1963). Acta Cryst. 16, 520.
- OH, Y. L. & MASLEN, E. N. (1966a). Acta Cryst. 20, 852.
- OH, Y. L. & MASLEN, E. N. (1966b). Tetrahedron Letters, 28, 3291.
- SUTOR, D. J. (1963). J. Chem. Soc. p. 1105.
- WILSON, E. B. (1962). Tetrahedron, 17, 191.

Acta Cryst. (1968). B24, 897

The Crystal Structure of Methyl α-D-Glucopyranoside

BY HELEN M. BERMAN AND S. H. KIM*

Crystallography Laboratory, University of Pittsburgh, Pittsburgh, Pa. 15213, U.S.A.

(Received 14 August 1967)

The crystal structure of methyl α -D-glucopyranoside, C₇H₁₄O₆, has been determined by application of the sign correlation procedure to the *hk*0 projection data and by inspection of the three-dimensional E^2-1 Patterson synthesis. The space group is $P_{21}2_{12}1_{1}$, with four molecules in a unit cell of dimensions $a=11\cdot304\pm0\cdot010$, $b=14\cdot785\pm0\cdot015$ and $c=5\cdot282\pm0\cdot005$ Å. The molecule is in the *trans* Cl chair conformation. None of the C-C or C-OH bond lengths differ significantly from their respective means. The C(1)-O(1) bond is slightly shortened and there is a significant difference between the carbon oxygen bond lengths in the pyranose ring.

Introduction

Methyl α -D-glucopyranoside, C₇H₁₄O₆, is the more stable of the two glycosidic anomers obtained when glucose is heated with acidic methanol. This is contrary to the expectation that the more equatorially substituted β -anomer would be the configuration of least nonbonding interaction and the 'anomeric effect' has been postulated to account for this (Lemieux & Chü, 1958; Edward, 1955). The results of previous crystal structure determinations have suggested that the hemiacetal group (cf. Robertson & Sheldrick, 1965; Kim & Jeffrey, 1967), which is that part of the molecule directly involved in anomerization and mutarotation, exhibits bond length variations dependent on whether the molecule is a free pyranose sugar or a glycoside. In particular, it has been proposed that the free hydroxyl of an α anomer will have a short C(1)–O(1) bond length, whereas the corresponding bond in a glycoside will be normal, but that the differences then appear between the C–O ring links (cf. Berman, Chu & Jeffrey, 1967). This structure determination of the methyl glucoside was undertaken

^{*} Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, Mass. 02139, U.S.A.

to obtain further data relating to this problem and to the study of hydrogen bonding in simple carbohydrates.

Crystal data

The cell dimensions were measured on a Picker automatic four-angle diffractometer.

Methyl α -glucopyranoside, C₇H₁₄O₆, M.W. 194·18, m.p. 165°.

Space group $P2_12_12_1$, from absences

h00, h = 2n + 1 0k0, k = 2n + 1 00l, l = 2n + 1. $a = 11 \cdot 304 \pm 0.010$ Å $b = 14 \cdot 785 \pm 0.015$ $c = 5 \cdot 282 \pm 0.005$ $D_x = 1 \cdot 461$ g.cm⁻³ $D_m = 1 \cdot 456$ $\mu_{Cu} \kappa_x = 11 \cdot 23$ cm⁻¹.

The cell dimensions determined by Cox & Goodwin (1933) are $a=11\cdot21$, $b=14\cdot58$ and $c=5\cdot29$ Å.

Experimental

Prismatic crystals with forms $\{110\}$, $\{120\}$, $\{010\}$, $\{101\}$, $\{011\}$, $\{011\}$ (Groth, 1910) were grown from methanol solution. Visually estimated Weissenberg *hk*0 data taken with Cu K α radiation were used to solve the structure in projection.

A set of three-dimensional data were then taken on the Picker four-angle automatic diffractometer with Cu K α radiation and a crystal cut to an approximate cube of dimensions $0.3 \times 0.3 \times 0.3$ mm³. The 840 available data, of which .786 were observed above background, were collected in thirty hours with 2 θ scan of 2° and 10 second background counts on each side. The data were reduced with use of a series of programs written for the IBM 1620 computer by Chu & Craven (1967). No absorption corrections were applied.

Determination and refinement of the structure

The structure was solved by a straightforward but cautious application of the IBM 1620 sign correlation procedure of Beurskens (1963) to the hk0 data. Four sets of signs were obtained and an E synthesis was calculated for each set. The thirteen highest peaks on one of the maps corresponded to the thirteen atoms of the structure and the first set of hk0 structure factors using these coordinates gave an R value of 0.26. The other three maps had very uneven distribution of peak heights.

An E^2-1 Patterson function was calculated with the three-dimensional data and the z coordinates were determined from an interpretation of the Harker sections, which were consistent with the molecular model and reasonable hydrogen bonding considerations. The first general structure factor calculation gave an Rvalue of 0.40, with good agreement for most of the

Table 1.	Fractional	atomic coord	'inates and a	nisotropic	thermal	parameters	in methyl	α-D-glucopyra	noside
	Key to	atomic numbe	ring is given i	in Fig.1. Th	he temper	ature factor e	xpression u	sed was	

exp $\left[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12}+2hl\beta_{13}+2kl\beta_{23})\right]$ and the estimated standard deviations are in parentheses.

	x	У	Z	β_{11}	β_{22}	β ₃₃	β_{12}	β_{13}	β ₂₃
C(1)	0.5509 (3)	0.3749 (2)	0.4421 (6)	0.0061(2)	0.0026(1)	0.0258(11)	0.0003(1)	0.0013(4)	0.0001(3)
C(2)	0.4310 (3)	0.4107(2)	0.3553 (6)	0.0063(2)	0.0025(1)	0.0215 (10)	0.0006(1)	-0.0010(5)	-0.0008(3)
C(3)	0.3403 (2)	0.3964(2)	0.5611 (6)	0.0056(2)	0.0026(1)	0.0234(11)	0.0006(1)	-0.0020(5)	-0.0013(3)
C (4)	0.3374 (3)	0.2962(2)	0.6328 (7)	0.0047(2)	0.0030 (1)	0.0314 (11)	0.0001(1)	0.0018(5)	-0.0001 (4)
C(5)	0.4606 (2)	0.2626(2)	0.7034 (6)	0.0050 (2)	0.0024(1)	0.0282(11)	0.0002(1)	0.0020(4)	-0.0007(3)
CÌÓ	0.4627 (2)	0.1620 (2)	0.7489 (7)	0·0046 (2)	0.0026 (1)	0.0402 (13)	0.0003 (1)	0.0001(5)	0.0012(4)
C(7)	0.7024 (3)	0.4069 (2)	0.7391 (9)	0.0063 (2)	0.0043 (2)	0·0466 (17)́	-0.0002(2)	-0·0044 (ố	-0.0009(5)
O (1)	0.5865(2)	0.4286 (1)	0.6495 (5)	0.0053(2)	0.0030 (1)	0.0324 (9)	0·0004 (1)́	-0·0015 (4)	-0.0014(3)
O(2)	0.4390 (2)	0.5021 (1)	0.2742 (4)	0.0080(2)	0.0027(1)	0.0234 (8)	0.0004(1)	-0·0009 (4)	0.0004(2)
O(3)	0.2277 (2)	0.4247 (1)	0.4701 (5)	0.0052 (2)	0·0045 (1)	0.0293 (9)	0.0015 (1)	-0.0015(3)	-0.0012(3)
O(4)	0.2644(2)	0.2805 (2)	0.8472 (6)	0.0059 (2)	0.0047 (1)	0.0479 (12)	0.0010 (1)	0.0053 (4)	0.0046 (3)
O(5)	0.5427 (2)	0.2821(1)	0.5039 (4)	0.0053(2)	0.0023(1)	0.0261 (7)	0.0005 (1)	0.0031(3)	-0.0012(2)
O(6)	0.5690 (2)	0.1352 (1)	0.8761 (4)	0.0056(2)	0.0032 (1)	0.0319 (8)	0.0005 (1)	- 0·0009 (3)	0.0022(3)
H(C1)	0.610	0.380	0.280						
H(C2)	0.410	0.370	0.190						
H(C3)	0.370	0.430	0.730						
H(C4)	0.300	0.250	0.490						
H(C5)	0.200	0.300	0.870						
H(C6)	0•460	0.120	0.575						
H(C6')	0.390	0.140	0.830						
H(C7)	0.590	0.340	0.820						
H(C7')	0.710	0.450	0.870						
H(C7'')	0•780	0.420	0.650						
H(O2)	0.440	0.540	0.400						
H(O3)	0.170	0.440	0.600						
H(O4)	0.180	0.310	0.820						
H(06)	0.640	0.110	0.750						

strong reflections. However, one weak reflection, 021, gave particularly poor agreement, which was corrected by shifting the z coordinates of the whole molecule by 0.05. The R index was then 0.27. Several cycles of isotropic refinement and one cycle of anisotropic refinement, using the Busing, Martin & Levy (1962) least-squares program as modified by Shiono (1966) and the Cruickshank (1961) weighting scheme, reduced R to 0.09. The difference synthesis with sin $\theta \leq 0.7$ then

Fig.1. Identification and numbering of the atoms in methyl α -D-glucopyranoside.

showed many minor peaks including some at reasonable positions for the hydrogen atoms. A malfunction in the electronics which did not enable the scaler to count beyond 4000 c.p.s. was then discovered. After correction, the strong reflections and an equal number of moderate reflections were remeasured, scaled, and included in the refinement. The new difference synthesis then showed hydrogens at likely positions with no spurious peaks. With these coordinates included, several refinement cycles of positional and thermal parameters of the heavier atoms gave a final R value of 0.041. The final positional and anisotropic thermal parameters are given in Table 1 and the corresponding r.m.s. displacements in Table 2. The structure factors are given in Table 3; the unobserved and seven strong low order reflections were not included in the refinement and are so indicated.

Description of the structure

The formal nomenclature for α -methyl glucoside is methyl α -D-glucopyranoside. The configuration and atomic numbering are given in Fig.1. The molecule is in the conventional Cl *trans* chair conformation with the conformation angles around the pyranose ring ranging from 54.2 to 60.2°, as compared with 55.8 \rightarrow 61.7° for an ideal* pyranose ring and 51.3 \rightarrow 62.2°, 54.8 \rightarrow 56.0°, and 56.2 \rightarrow 60.5° for glucose (Brown & Levy, 1965), sucrose (Brown & Levy, 1963), and β methyl maltoside (Chu & Jeffrey, 1967), respectively.

* Hypothetical pyranose ring with C-C 1.525, C=O 1.430 Å, valence angle on carbon atoms 109.5° and that on ring oxygen atoms 113.3° .

Table 2. Principal axes of thermal ellipsoids

The root mean square displacement U_i corresponds to the *i*th principal axis of the ellipsoid and θ_{ia} , θ_{ib} , θ_{ic} are angles between the *i*th axis and the crystallographic axes, *a*, *b*, *c*.

	i	U_i	θ_{ia}	θ_{ib}	$ heta_{ic}$		i	U_i	θ_{ia}	θ_{ib}	θ_{ic}
C(1)	1	0·1669 Å	104·48°	15·32°	85·10°	O(1)	1	0·1728 Å	122·59°	33·76°	82·12°
. /	2	0.1841	121.40	102.02	34.13		2	0.1836	140.54	114.96	118.36
	3	0.2059	35.31	80.64	56.31		3	0.2232	70.29	68.79	150.36
C(2)	1	0.1578	102.50	27.43	66.00	O(2)	1	0.1682	99.73	27.34	115-28
	2	0.1734	113.44	72.53	150.10	. ,	2	0.1836	93.29	116.20	153-55
	3	0.2103	26.92	69.54	106.74		3	0.2287	10.28	8 2 ·71	97.22
C(3)	1	0.1601	101.23	28.67	63.99	O(3)	1	0.1623	28.12	116.97	82.62
	2	0.1689	133.14	78·52 ´	134.58		2	0.1983	92.76	110.94	158.85
	3	0.2117	45.32	64.10	124.13		3	0.2431	62.03	35.27	109.69
C(4)	1	0.1674	22.93	103.33	108.30	O(4)	1	0.1769	22.41	93.05	112.18
	2	0.1839	102.74	166.65	86.12		3	0.2011	81.45	149.50	60.97
	3	0.2150	71.26	90.40	18.74		3	0.2939	69.43	59.69	37.93
C(5)	1	0.1570	114.57	31.34	71.78	O(5)	1	0.1393	120.11	43·00	62.47
• •	2	0.1755	141.30	120.76	68.94	- ()	2	0.1799	124.33	132.96	62.21
	3	0.2082	62.17	95.42	28.43		3	0.2127	49.01	91.53	41.02
C(6)	1	0.1639	128.74	39.56	96.76	O(6)	1	0·1672	119.51	42·11	117.06
. ,	2	0.1769	141.22	127.91	83.04	- (-)	2	0.1982	150.46	115.51	76.12
	3	0.2402	88.80	80.34	9.72		3	0.2243	91.04	59.07	30.94
C(7)	1	0.1853	26.80	78.00	66.40						
. ,	2	0.2185	76.21	166.12	91.54						
	3	0.2683	112.51	96.86	23.86						

These results indicate that the range of angles becomes narrower as the ring is more heavily substituted at the O(1) position. The conformation of the C(5)-C(6)bond is plus synclinal (Psc) $(+73.5^{\circ})$ and thus falls into the range most commonly found in pyranose sugars (Sundaralingam, 1967). The distortion from the idealized 60° is possibly caused by the participation of O(6) in three hydrogen bonds.

As shown in Table 4, the C-C distances vary from 1.506 to 1.531 Å, with an average of 1.519 Å. This spread is not significantly reduced by applying the thermal corrections assuming a riding motion (Busing & Levy, 1964). The carbon valence angles interior to the pyranose ring $(109.1 \rightarrow 110.8^{\circ})$ show a narrower range of values than the exterior angles $(106.4 \rightarrow$ 113.1°). The oxygen valence angles, 114.0° within the

Table 3. Observed and calculated structure factors Columns are Index, $|F_{obs}|$, $|F_{calc}|$, A_{calc} , B_{calc} . *indicates unobserved reflections, + indicates reflections excluded from refinement.

	K= 0 H= 0		K= 1 H= 1	4	45 51 51	0 3	158 148 0	148- 3	219 216 0	216-
2	190 202 202-	8	0 335 + 394 0	394- 5 199	*1 *1 0 K= 1 H= 2	5	36 36 0	36- 5	24 25 D	25
6	24 25 25	Ō	2 214 233 36-	230- 0	15 20 20-	234- 0	K= 1 H= 3 31 29 0	29-0	K= 1 H= 4- 307 318 318-	0
1	567+667 0	667-	4 69 65 64-	10- 2	156 152 150-	22- 1	154 156 109-	111- I	296 305 305-	8-
2	93 86 0 211 208 0	86-	5 24 22 7-	21- 3	202 203 195	24- 3	130 134 8-	134- 3	188 177 37	172-
4	13• 20 0	20	K= 2 H= 1	5	90 92 46	80- 4	81 82 79-	20 4	108 108 93	55 54-
6	91 89 0 61 59 0	89- 59	1 479 + 541 159-	517- 0	77 78 78-	0	K= 2 H= 3		K= 2 H= 4	
-	K= 2 H= 0		2 158 168 74	151 1	494 542 542	13- 0	298 274 0	274- 0	289 309 309-	195
1	5+ 8 8-	ŏ	4 22 22 8-	20- 3	116 114 33	109 2	366 390 338	193 2	354 351 93	338
2	126 125 125-	0	5 33 34 5- K= 3 H= 1	34- 4	195 195 160-	111- 3 36 4	143 145 75 168 167 165-	125 3	27 21 4	21-
4	26 29 29	ŏ	0 156 156 0	156	K= 3 H= 2	5	70 72 2-	72- 5	66 73 55.	48
5	30 30 30 42 46 46-	ő	2 133 133 131-	22 1	486 509 325-	392 0	280 304 0	304- 0	87 95 95	0
	K= 3 H= 0		3 83 77 76	9- 2	190 204 180	97 1	96 93 27	89-1	191 191 179- 164 152 88	66- 124-
2	160, 149 0	149	5 77 79 36-	71 4	111 112 63	92- 3	80 74 73	11 3	24 19 17	7
3	97 93 0	93	K= 4 H= 1	198 -	90 93 6 K= 4 H= 2	93 4	147 152 43-	146- 4	78 82 82 23 25 24-	5
5	42 36 0	36	1 373 389 301-	247- 0	6* 4 4-	0	K= 4 H= 3		K= 4 H= 4	•
٥	K= 4 H= 0 262 291 291-	0	2 295 293 156 3 161 168 142-	248- 1 89 2	230 231 197- 183 189 31-	122- 0	164 163 162	20 1	135 121 97	72-
i	111 100 100-	õ	4 96 92 27	88- 3	88 89 78-	43- Z	90 87 71	51- 2	136 134 26-	131
3	183 168 168-	0	5 38 30 24- K= 5 H= 1*	20- 5	62 57 2~	57 4	115 118 92	74- 4	28 26 18-	19-
4	124 124 124	0	0 223 206 0	206-	K= 5 H= 2	·n 5	58 56 9 Ka 5 Ha 3	55 5	38 36 1 K= 5 H= 4	36
,	K= 5 H= 0	v	2 438 461 296	354 1	95 88 36	80- 0	64 56 0	56 0	68 63 63	.0
1	396 414 0	414-	3 135 126 120-	38- 2 59 3	72 69 10-	68- 1 184 2	79 83 80	22 2	54 54 48	24
3	79 76 0	76	5 108 110 100-	47- 4	50 51 50-	6- 3	71 73 69-	22 3	172 172 107	136-
\$	42 44 0	44-	0 352 359 0	359	K= 6 H= 2	5	52 51 47-	20 5	64 65 53-	38-
•	K= 6 H= 0	•	1 192 197 20	196- 0	336 344 344	90 0	K= 6 H= 3	111 0	K= 6 H= 4 99 96 96-	0
ĭ	544 565 565-	ŏ	3 88 83 9-	83 2	71 77 62-	47- 1	87 90 40-	81 1	55 50 16-	47
23	224 211 211-	8	4 34 30 16 5 47 52 14	25- 3	83 74 50- 144 137 122	64 3	153 148 142	41 3	10+ 4 4-	2
4	37 39 39	ō,	K= 7 H= 1	5	64 64 60-	22 4	87 89 4-	89 4 32 5	48 52 43-	30
2	40 40 40 K= 7 H≈ 0	0	1 149 141 117	78	K- 1 H- 2		K= 7 H= 3		K= 7.H= 4	
1	263 255 0	255	2 145 138 70	119 0 57- 1	10- 6 6- 71 61 10	60 0 60 1	499 519 0 87 85 60	519- 0 60 1	60 11 11 68 73 70	19
3	35 36 0	36	4 30 27 9	26- 2	120 114 42-	107 2	77 76 36	67- 2	194 187 115	147-
\$	29 30 0	30	5 58 56 48 K= 8 H= 1	29- 3	22 27 27	6- 4	79 75 75	1 4	14+ 13 12	5-
•	K= 8 H= 0	•	0 586 614 0	614- 5	59 62 57- K= 8 H= 2	25 5	70 74 51 K= 8 H= 3	54- 5	93 91 89- K= 8 H= 4	17
ĭ	375 379 379	ŏ	2 128 119 117-	24 0	329 333 333		69 66 0	66- 0	15+ 16 16	.0
2	117 117 117-	8	3 74 71 57 4 56 54 52-	42 1	26 21 17	13 2	181 177 175-	23- 2	113 112 80-	79-
1	60 64 64	ò	5 47 48 24-	42- 3	85 87 32-	81- 3	196 198 197-	17 3	208 206 85-	187-
,	28 23 23 K= 9 H= 0	0	0 216 210 0	210- 5	48 49 44	21 5	68 62 36-	51-	K= 9 H= 4	
1	293 295 O	295	1 232 229 219- 2 163 157 110-	66 112 0	K= 9 H= 2 79 70 70-	0 0	140 134 0	134 1	43 42 1	42-
3	98 96 0	96-	3 64 68 42-	53- 1	84 87 82	30- 1	91 86 39-	76 2	51 55 41-	37
5	15+ 12 0	12-	5 67 67 61-	29 3	135 130 101	82- 3	15+ 15 6-	14- 4	19 18 11	14
0	K= 10 H= 0 231 235 235	0	K= 10 H= 1 0 62 65 0	65 5	40 39 14-	37-	x= 10 H= 3	1/- o	45 46 46-	.0
ī	29+ 28 28-	Ó	1 258 259 150	211-	K= 10 H= 2		71 65 0 208 209 22	65 1	166 159 139-	77-
3	54 57 57	ě	3 91 93 40	84 1	70 71 41	58 2	63 64 63	12- 3	33 38 11	37-
4	22 20 20 K= 11 H= 0	0	4 149 144 50- K= 11 H= 1	135 2	93 92 44 149 153 143	80- 3 54- 4	78 83 40-	73	K= 11 H= 4	22
1	13 11 0	11-	0 16+ 3 0	3 4	40 39 28	26	K= 11 H= 3	142- 1	218 219 219-	~
5	104 105 0	105-	2 120 121 57-	106- 0	58 59 59	0 1	101 105 104	6- 2	52 52 41-	33-
4	61 60 0 K= 12 H= 0	60-	3 136 137 75	35- 2	204 204 185-	130 3	41 42 24	30 3	45 49 44-	21
0	63 72 72	2	K= 12 H= 1	37- 4	128 124 36	119- 4	63 48 16~ Km 12 Ha 3	45- 0	K= 12 H= 4	۵
1	24 20 20	ŏ	1 74 82 80-	20-	K= 12 H= 2		119 123 0	123- 1	115 113 18	112
2	189 204 204-	8	2 93 88 87 3 48 49 48	9 0	34 25 25 30 31 27	15 2	121 121 117-	30 2 39- 3	45 43 43- 28 28 8	26
4	84 86 86	ō	4 39 42 2-	42- 2	213 219 199-	92- 3		24	K= 13 H= 4 241 251 251	n
1	10. 4 0	4	0 33 32 0	32- 4	49 48 37-	30-	K≈ 13 H= 3	1	94 96 92-	26
2	10 12 0 66 91 0	12	1 62 59 41- 2 30 28 27	42- 7- 0	K= 13 H≈ 2 137 141 141	0) 37 31 0 1 124 127 81-	31 2 98 3	68 67 20	64
	K= 14 H= 0	-	3 74 71 68	18 i	137 138 125-	57 2	2 59 59 23	55	K= 14 H= 4 45 44 44	٥
1	47 41 41-	ŏ	0 34 31 0	31 3	66 66 11-	66	K= 14 H= 3	1	35 35 35-	1-
2	10+ 13 13 6+ 1 1	ŝ	1 34 29 27- 2 61 59 58	9- 11- 0	K= 14 H= 2 65 64 64	0 1	, 7* 8 D 78 79 69~	82 39	K= 15 H= 4	1-
	K= 15 H= 0		3 76 76 22-	73 1	61 67 14	66	2 20 20 7-	19 0	6+ 3 3-	0
2	36 40 0	40-	0 30 30 0	30- 3	62 61 51-	34-	K= 15 H= 3	2	52 51 11-	50
•	K= 16 H= 0 36 30 30-	p	1 43 40 38-	13- 26 0	K= 15 H= 2 25 24 24-		28 27 0 50 54 21-	27 50- 0	K= 16 H= 4 39 38 38-	٥
ĩ	6 9 9	õ	K= 16 H= 1	1	29 31 1-	31-	2 51 53 0	53	K= 0 H= 5	200
1	K* 0 H= 1 450 501 0	501	1 31 27 3	27- 2	K= 16 H= 2	10-	13+ 8 0	8- 2	241 236 236	0
2	109 114 114	0	K= 0 H= 2	0 1	43 47 47 28 26 13	22-	L 61 59 59 K= 0 H= 4	2 3	92 80 0 33 33 33-	80 0
4	78 85 85-	ŏ	1 77 94 0	94	K= 0 H= 3		376 367 367	0 5	67 69 0	69
5	52 50 O 6+ 16 16	- 0 0	2 18r 1rr 177- 3 204 205 0	205~ 2	181 177 177-	0	2 54 58 58	0 0	102 105 0	105-

Table 3 (cont.)

1	277 268 258	71	1	167 164 125- 106		K= 4 H= 7		4	24 23 23-	5	0	131 132 132	0
- 1	108 104 33	146-		12 66 45 48	°,	54 56 U	56-	~	K= 8 H= 8		1	83 88 82-	32
- 4	20 11 11	1-	4	57 58 1- 58~	2	146 148 6	148	ĩ	87 90 17-	-0 89-	1	28 27 12	24-
5	47 42 10	41	5	30 27 26- /	3	83 91 44-	79-	ž	102 104 7-	104		K= 3 H= 10	• •
_	K* 2 H= 5			K= 3 H= 6	- 4	125 123 87	87	3	13 13 5	12	0	64 56 56-	0
, ó	28 25 0	25-	ò	274 261 261- 0		K= 5 H= 7		-	K= 9 H= 8		1	90 88 87	12-
5	61 60 60	70-	1		°,	45 43 0	43	0	97 86 86-	.0	2	41 40 14-	37-
3	59 56 48-	28-	5	127 132 51- 121-	2	134 131 113-	68	2	50 48 47-	11	د	21 30 2- Ke A He 10	30
- 4	31 28 28-	7-	4	29 27 24- 12	3	148 159 158	19	3	68 66 7-	66	0	65 62 62-	0
5	62 63 36-	52	5	26 26 0 26	4	25 27 27-	5-		K= 10 h= 8		1	78 84 77-	32
•	313 322 0		~	, K× 4 H= 6		K= 6 H= 7		°.	80 72 72-	0	2	128 122 82	91-
1	347 325 4	325-	ň	42 32 32 0	, v	112 113 10-	113	-	76 60 40-	44	3	22 22 15-	16-
ž	38 31 31	2	ż	83 80 63 48-	2	103 105 103	18-	5	50 35 35-	3-	0	52 57 57-	•
3	55 53 18	50-	3	12+ 7 /- 1-	3	151 153 135	73-	-	K= 11 H= 8	-	ĭ	7. 7 5	4
4	155 157 54	148-	4	90 90 82- 37-	4	48 45 25-	38	0	124 120 120-	0	2	52 57 46-	33
,	43 40 23	33	5	71 70 62- 33		K= 7 H= 7		1	62 61 21	58	3	22 22 15-	17
0	327 324 0	326-		K= 2 H* 6		33 35 0	35-	2	82 82 17	80-	•	K= 6 H= 10	~
ĩ	275 266 258-	64	0	6 10 10 0	ż	98 105 62-	85-	٥	90 24 24-	٥	ŭ	28 25 25-	46
2	166 163 133	94-	1	137 128 4- 128	3	50 50 12	49-	ĩ	63 60 26	54	2	84 90 74	52
3	37 37 32-	19	2	108 104 42- 95-	- 4	74 75 26-	71-	2	105 108 107	10	3	52 55 5	55
2	89 83 4	83	3	45 43 20- 38-		K= 8 H= 7			K= 13 H= 8		-	K= 7 H= 10	
,	-K# 5 H# 5	41-	2	49 47 42- 10-	0	117 123 0	123	°,	64 66 66	0	ę	34 35 35	
0	45 43 0	43-	-	K= 6 H= 6	ż	82 85 7	85-	•	K= 0 H- 9		2	24 20 17	11
1	151 144 142-	25	0	113 110 110 0	3	124 126 125-	14-	1	33 35 0	35	-	K= 8 H= 10	
2	208 204 125-	161	1	179 1/3 137 106	4	40 41 6-	40-	2	60 57 57-	0	o	96 95 95-	0
2	28 29 16	25-		22 18 13 12-	~	K= 9 H= 7	,	3	33 18 0	18-	1	35 36 36-	. 2-
5	58 55 6-	55-	4	74 75 65- 36	ĩ	22 21 7	20	•	X 1 H 3 Q	U	2	27 26 20 K7 9 Hx 10	17-
-	K# 6 H# 5			K= 7 H= 6	ż	89 96 29	92	0	36 38 0	38-	0	110 108 108	0
0	27 25 0	25-	0	87 84 84 0	3	54 61 20	57-	ì	284 293 190	223	ĩ	48 45 42	15-
1	10 8 6	5-	1	82 82 79- 23		K= 10 H= 7		2	50 46 46-	2	2	31 30 16	26
5	47 38 24-	30-		110 118 43 109	0	28 26 0	26	3	20 19 11	16-	~	K= 10 H= 10	•
- 4	70 68 67-	12	4	48 47 44 18	2	86 87 19-	85-	-	Kx 2 Hz 9	0-	ň	H7 88 74	48-
5	42 42 36	22-		K= 8 H= 6	3	56 58 45	37	0	105 97 0	97-	•	K= 0 H= 11	40
	K= 7 H= 5		0	30 29 29- 0		K= 11 H= /		1	130 135 48-	126	1	30 29 0	29-
, v	82 92 0	92-	1	49 42 4 42	°.	77 76 0	76-	2	154 154 57-	143-	2	26 26 26	0
2	61 66 66-	1	5	52 47 19 43-	2	19 18 54-	57-	2	44 45 37	26-	3	31 28 0	28
3	29 29 18	22	4	9. 9 4 7	3	88 91 72-	56	-	K= 3 H= 9	23-	٥	154 159 0	159
4	10 6 0	6-		K= 9 H= 6		K= 12 H= 7		0	77 81 0	81-	ĭ	40 43 42-	- 4
~	K= 8 H= 5	••	ò	53 55 55 0	0	16• 11 0	11	1	149 150 135-	66	2	63 57 34	46-
ň	132 132 120-	55	2	47 41 32 85-	1	51 50 43-	27	2	151 159 156	28-	3	15+ 18 14	12-
ż	183 179 168-	62	3	54 61 11 60	2	K 13 H 7	10	4	25 20 20-	30	•	SI 51 0	63
3	59 64 50-	40~	4	96 91 88 24	0	32 31 0	31		K= 4 H= 9		ĭ	102 101 11	101
4	49 52 19-	48-		K= 10 H= 6	1	21 22 13	18	0	48 51 0	51-	ź	49 46 29-	35-
~	K= 9 H= 5		ò	63 57 57 0	2	44 42 23-	35	1	101 97 82-	52	3	33 34 5	34-
ň	154 156 57-	145	5	92 87 35- 80-	•	43 44 0	44 -	ŝ	25 24 5	24-	~	K= 3 H= 11	
ż	297 307 41	304	3	25 23 19- 12-	•	K= 0 H= 8		2	20 18 17	23-	1	AR 49 34-	36
3	20 22 17-	14	4	43 42 39- 16	0	364 377 377-	0		K# 5 H= 9	•	ż	21 19 18	3
4	27 28 21-	18		K= 11 H= 6	1	155 144 0	144	0	65 63 0	63	3	48 46 39-	24
0	223 225 0	225	Ŷ		2	58 62 62	1 20-	1	43 41 19-	36		K= 4 H= 11	
ĩ	256 258 232	112	ż	71 /0 36 60-	4	7+ 2 2	120-	ŝ	69 67 64-	20-	ň	31 36 16	130
2	164 163 162	15	3	65 64 29 57		K= 1 H= 8	-		K= 6 H= 9		ž	83 81 58-	56
3	58 57 46	33	-	K= 12 H= 6	0	165 148 148	0	0	36 38 0	38-		K= 5 H= 11	
•	42 42 27- K= 11 Ha 5	33-	2		1	135 131 75	108	1	37 35 32	15-	•	8 0 0	0
0	21 15 0	15-	ż	31 30 28 11	3	55 44 38	22-	5	45 42 21	36-	5	12 16 42	16-
1	46 48 19	44 -	3	26 29 27- 11-	4	22 24 4-	24	-	K# 7 H= 9		-	K= 6 H= 11	
2	71 70 43	56-		K= 13 H= 6		K= 2 H= 8		0	176 188 0	188	0	26 29 0	29-
,	** 12 H= 5	•8	ň	83 88 88 U	•	70 71 71-	.0	1	112 113 96-	60-	1	36 35 35	1
0	26 24 0	24	ż	50 46 35 30	2	208 217 141	164-	4	27 24 22-	10-	•	K* 7 H* 11	7-
1	46 49 15-	47		K= 14 H= 6	3	136 141 63-	126		K= 8 H= 9		ŏ	6. 7 0	7-
2	24 26 25	12-	°,	141 146 146- 0	4	21 17 16	6	0	162 161 0	161	1	52 48 48	4
	K= 13 H= 5	30-	•	50 57 20 51-	•	250 252 252	•	5	41 40 40-	1-	^	K= 8 H= 11	
0	141 141 0	141-	0	31 33 33- 0	ĭ	78 75 31	68-	ŝ	40 40 8-	39-	ĭ	54 56 54-	70
1	80 74 60	44		K= 0 H= 7	2	149 149 121	86-	-	K= 9 H= 9	•	-	K= 0 H= 12	•••
2	31 31 27	14	1	73 65 0 65-	3	46 46 44-	13-	0	14* 3 0	3	0	15 15 15-	0
,	X 14 Hz 5	43-	2	50 66 0 66-	-	52 54 39	37	1	126 120 118	19-	1	11. 12 0	12
0	19 19 0	19-	4	15+ 16 16- 0	٥	105 107 107	٥	٤	K = 10 H = 9		2	/ 0 8 K= 1 H= 12	0
1	69 64 60-	35-	5	26 30 0 30	ī	74 77 66	39-			5-			
2	36 36 33	14-		K= 1 H= 7	2	34 31 21	23	0	6 5 0	5-	0	6• 2 2	0
0	33 30 0	30-	0	25 14 0 14	3	100 108 11-	108-	1	78 84 56	62	1	39 39 16-	35
ĭ	48 46 43	16-	ż	159 158 147 59	-	07 07 03- Kz 5 Hz A	10	۲	57 30 35- Ka 11 kr 0	11-	2	27 27 25 K= 2 4- 12	52-
-	K= 0 H= 6		3	160 169 168- 16	0	41 38 36	0	0	18 18 0	18-	0	60 57 57	٥
0	458 469 469-	0	4	74 68 11 67	1	107 101 86-	53	1	56 54 24-	48-	í	42 40 39-	10-
1	234 228 0	228-	5	40 38 1 38	ş	37 37 5	36		K= 12 H= 9		2	27 30 17	24-
3	249 248 0	248-	0	150 1 0 1-	3	94 92 4- 178 10 14-	91-	0	26 Z3 0	23-	•	K= 3 H= 12	•
4	58 61 61	0	ĭ	88 87 32 81	-	K= 6 H= 8		0	262 263 263-	0	1	50 40 40 94 91 73	55-
5	6 21 0	21-	2	142 143 76 121	0	28 25 25-	0	ĩ	102 187 0	187-	ż	53 50 39	32
•	K= 1 H= 6	•	3	121 125 120 33-	1	126 124 50	114-	2	37 39 39-	0		K= 4 H= 12	-
1	209 199 172-	100-	2		2	50 50 13	48-	3	13 10 0	10	0	27 24 24-	0
ż	264 270 269-	19-	-	K= 3 H= 7	4	70 74 34-	63	0	57 1 H4 10	0	+	20 5/ 31 Kr 5 Hr 12	20
3	189 196 176	86	0	162 184 0 184-		K= 7 H= 8	••	ĭ	108 109 50	97	0	53 49 44-	0
4	70 76 53-	55-	1	50 48 38- 29	o	24 23 23-	0	2	103 108 100-	40-	Ĩ.	20 21 18	10-
,	37 35 16- K= 2 H= 4	31	2	44 42 2 42	1	135 134 122-	57-	3	49 45 3-	45		K= 6 H= 12	-
0	215 215 215-	0	4	83 81 38 72-	4	57 42 6- 47 40 37	42-		K= Z H= 10		0	22 20 20-	0

ring and 113° in the glycosidic link, are intermediate between those observed in glucose and sucrose (Brown & Levy, 1963; 1965).

One of the purposes of studying this structure was to observe the effect of methyl substitution for HO(1) on the C-O bond lengths in the hemiacetal group of α -glucosidic sugars. In α -D-glucose, as well as in four other pyranose sugars, the C(1)-O(1)H bond is significantly shortened (*cf*. Kim & Jeffrey, 1967). However, no such shortening has been observed in the α -glycosidic bonds of sucrose (Brown & Levy, 1963), β -methyl maltoside (Chu & Jeffrey, 1967), or α -methyl-D-galactoside-6-bromohydrin (Robertson & Sheldrick, 1965), but there are significant differences observed between the ring carbon oxygen bonds. The results of this determination are in agreement with the latter observations and show that any substituent other than hydrogen will bring the axially oriented C(1)-O(1) bond lengths closer to a 'normal value'.

In detail, however, our results are midway between those of α -glucose and sucrose (*cf.* Table 5) in that the C(1)-O(1) bond, while not as drastically shortened as

i	j	D(ij)	$D(ij)^*$	i	j	k	∠(ijk)
C(1)	C(2)	1·526 (4) Å	[1.526] Å	C (1)	C(2)	C(3)	109.8 (2)°
C(2)	C(3)	1.509 (4)	[1.509]	C(2)	$\overline{C}(\overline{3})$	C(4)	109.1 (2)
Č(3)	C(4)	1.531 (4)	1.5331	$\vec{C}(\vec{3})$	C(4)	C(5)	110.8 (2)
C(4)	C(5)	1.525 (4)	[1.528]	C(4)	C(5)	C(6)	112.0(2)
C(5)	C(6)	1.506 (4)	[1.511]	C(4)	C(5)	O(5)	110.2 (2)
C(1)	O(1)	1.411 (4)	[1.414]	C(5)	O(5)	C(1)	114·0 (2)
C(2)	O(2)	1.421 (4)	[1.426]				
C(3)	O(3)	1.423 (4)	[1.432]	O(1)	C(1)	C(2)	106.9 (2)
C(4)	O(4)	1.420 (4)	[1.435]	C(1)	C(2)	O(2)	111.3 (2)
C(5)	O(5)	1.434 (4)	[1.434]	C(2)	C(3)	O(3)	108.8 (2)
C(1)	O(5)	1.414 (4)	[1.416]	O(3)	C(3)	C(4)	110.4 (2)
C(6)	O(6)	1.433 (4)	[1.434]	C(3)	C(4)	O(4)	111.6 (2)
C(7)	O(1)	1.430 (4)	[1·44 2]	O(4)	C(4)	C(5)	106.4 (2)
				C(4)	C(5)	O(5)	110.2 (2)
				O(5)	C(1)	C(2)	110.2 (2)
				C(1)	O(1)	C(7)	113.0 (2)
				O(5)	C(1)	O(1)	112.6 (2)
				O(2)	C(2)	C(3)	113.1 (2)
				C(5)	C(6)	O(6)	111.2 (2)
				O(5)	C(5)	C(6)	107.8 (2)

Table 4. Bond lengths and angles in methyl α -D-glucopyranoside

The estimated standard deviations given in parentheses refer to the last decimal positions at respective values.

* Bond lengths corrected assuming 'riding motion' (Busing & Levy, 1964).

Fig. 2. The crystal structure of methyl α -D-glucopyranoside viewed down the c axis, showing the helical arrangement of hydrogen bonds.

the bonds in unsubstituted pyranose sugars, is shortened by 3σ from the average C-OH bond in α -methyl glucoside. They correspond more closely to those of β -methyl maltoside than to sucrose, where there is part of a C-O-C-O-C-O-C conjugated system in the α link (Sundaralingam, 1967).

The hydrogen bonding scheme, illustrated in Fig. 2, consists of pairs of three-membered helices O(2)-O(6c)-O(3d)-O(2a) related by the *c* screw axis. For every pair of helices spiraling in the +**c** direction, there is another in the -**c** direction. This is a characteristic feature of several carbohydrate crystal structures and similar helices were found in methyl maltoside, sucrose and glucose.

The hydrogen bonding $O \cdots O$ distances involved in this helical arrangement are unusually close to the average value of 2.704 Å (Table 6), and the O-H \cdots O angles are comparable to those observed in carbohydrates where the hydrogen positions have been more precisely determined by neutron diffraction (Brown & Levy, 1963, 1965). The ring and glycosidic oxygens do not participate in the hydrogen bonding scheme, although O(5) has a close intermolecular $O \cdots O$ contact, *i.e.* to O(4), of 3.25 Å. All other $O \cdots O$ contacts are > 3.3 Å.

The hydrogen-bond environment for O(4) is similar to that of the corresponding atom in the glucose unit of sucrose, as shown below:

In both structures, O(4) is in close contact with the oxygen of a CH_2OH group and a ring oxygen atom. In each, one contact is longer than a hydrogen bonding

Table 6. Hydrogen bonding distances and angles

Symmetry code								
-	x	J	v	Z				
а	x	1	v 1+	- <i>z</i>				
b	0.5+x	0.5 - 5	v 1-	- <i>z</i>				
с	1-x	0.5 + 3	v 1·5-	- <i>Z</i>				
d	0.5-x	1 — J	v 0·5+	- <i>Z</i>				
е	$1 \cdot 5 - x$	1-1	v 0.5+	- <i>z</i>				
f	-0.5+x	0.5 - 5	v 2-	- <i>Z</i>				
i	j	k	D(jk)	∠(ijk)				
C(2)	O(2)	O(6)c	2·700 Å	118·9°				
C(3)	O(3)	O(2)d	2.702	122.6				
C(6)	O(6)	O(3)b	2.710	109-2				
C(4)	O(4)	O(6)f	2.927	140.0				
O(2)	H(O2)	O(6)c	1.84	169				
O(3)	H(O3)	O(2)d	1.76	162				
O(6)	H(O6)	O(3)b	1.61	170				
O(4)	H(O4)	O(6)f	2.19	125				

Intermolecular non-bonded O···O distances less than 3.3 ÅO(5) O(4)b 3.252 Å

Interatomic contacts be	etween CH ₃ and	CH ₂ groups.*
-------------------------	----------------------------	--------------------------

i	j	D(ij)
C(7)	C (7) <i>e</i>	3∙60 Å
H(C7')	C(7) <i>e</i>	3.04
H(C6')	C(7)f	3.19
H(C7'')	C(6)b	3.19
H(C7'')	H(C6)b	2.43
H(C7')	H(C7'')e	2.43

* All distances listed are within 0.3 Å of the sum of the van der Waals radii assuming that C = 1.7 Å and H = 1.2 Å.

distance and the other has a reasonable hydrogen bonding distance but an O-H-O angle which shows that the hydrogen is far from the line of centers. In α methyl glucoside, the O(4)-O(6) contact has the appropriate hydrogen bonding distance and a rather small angle of 124°. Since O(6) is already involved as a donor and acceptor in the hydrogen bonding scheme, we may classify O(4)-O(6) at best as a weak hydrogen bond. In sucrose, Brown & Levy (1963) have described O(4)-O'(2) (where O(2) is the ring oxygen of the fructose group) as a close contact rather than a hydrogen bond, on the basis of their more precise determination of the hydrogen atom position.

The close packing of the non-polar $C(7)H_3$ and $C(6)H_2$ groups around the screw axis parallel to c at $\frac{3}{4}, \frac{1}{2}$ may be as important a structure determinant as the helical hydrogen bonding pairs, as shown in Table 6. There are six pairs of atoms within van der Waals

		3σ		⊿(10-	3 Å)*		
Average C-C†	Average C-O(H) [†]	(10-3 Å)	C(5)	-O(5)	C(1)	-O(1)-R	Compound
1·523 (24) Å	1·417 (12) Å	9	+10	+09	-28	н	α-D-Glucose (Brown & Levy, 1965)
1.519 (25)	1.424 (13)	12	+10	10	-13	CH_3	Methyl α -D-glucoside (this work)
1.524 (19)	1.428 (12)	22	+12	-20	-12	gluc.	β -Methyl maltoside (Chu & Jeffrey, 1967)
1.525 (14)	1.418 (10)	9	+18	-10	+02	fruc.	Sucrose (Brown & Levy, 1963)
1.519 (18)	1.424 (11)	12	+13	+ 09	-41	H	β -D-Glucose (Chu, 1967)

Table 5. Summary of bond length variations in glucosidic sugars

* \varDelta refers to deviation from mean carbon hydroxyl length.

[†] Number in parentheses refers to range of values in 10⁻³ Å.

contact distance. The alternation of these types of polar and non-polar regions is also found in β -methyl maltoside (Chu & Jeffrey, 1967) and β -methyl xyloside (Brown, Cox & Llewellyn, 1966).

The thermal ellipsoid parameters given in Table 2 show that the oxygen atoms appear to have higher thermal vibration amplitudes perpendicular to their C-O bonds than along them. This phenomenon was also observed in β -methyl maltoside (Chu & Jeffrey, 1967), sorbose (Kim & Rosenstein, 1967), and arabinose (Kim & Jeffrey, 1967). As in β -methyl maltoside, the methyl group has high thermal motion consistent with its van der Waals environment.

We wish to thank Dr R.D. Rosenstein for supplying us with the crystals of α -methyl glucoside. The help and encouragement of Dr G.A. Jeffrey throughout the course of this work and in the preparation of the manuscript is gratefully acknowledged. This research is supported by the U.S. Public Health Service, National Institutes of Health, under Grant No. GM-11293.

References

- BERMAN, H. M., CHU, S. S. C. & JEFFREY, G. A. (1967). Science, 157, 1576.
- BEURSKENS, P. T. (1963). Sign Correlation by the Sayre Equation. Technical Report, Crystallography Laboratory, Univ. of Pittsburgh.

- BROWN, C. J., COX, E. G. & LLEWELLYN, F. J. (1966). J Chem. Soc. (A) p.922.
- BROWN, G. M. & LEVY, H. A. (1963). Science, 141, 920, and private communication.
- BROWN, G. M. & LEVY, H. A. (1965). Science, 147, 1038, and private communication.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962).Fortran Crystallographic Least Squares Program. ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
- CHU, S. S. C. & CRAVEN, B. M. (1967). Picker Diffractometer Data Processing Program. Crystallography Laboratory, Univ. of Pittsburgh.
- Chu, S. S. C. & Jeffrey, G. A. (1967). *Acta Cryst.* 23, 1038. Cox, E. G. & Goodwin, T. H. (1933). SBII, 737.
- CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. New York: Pergamon Press.

EDWARD, J. T. (1955). Chem. and Ind. p. 1102.

- GROTH, P. (1910). Chemische Krystallographie, Vol.3, p.446. Leipzig: Engelmann.
- KIM, S. H. & JEFFREY, G. A. (1967). Acta Cryst. 22, 537.
- KIM, S. H. & ROSENSTEIN, R. D. (1967). Acta Cryst. 22, 648.
- LEMIEUX, R. U. & CHÜ, N. J. (1958). Abstracts of Papers, American Chemical Society 133, 31N.
- ROBERTSON, J. H. & SHELDRICK, B. (1965). Acta Cryst. 19, 820.
- SHIONO, R. (1966). Oak Ridge Least Squares Program Modified for the Crystallography Laboratory of the Univ. of Pittsburgh.
- SUNDARALINGAM, M. (1967). Private communication.

Acta Cryst. (1968). B24, 904

The Crystal and Molecular Structure of Trimeric Bis(acetylacetonato) zinc (II)

BY M. J. BENNETT, F. A. COTTON AND ROGER EISS

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

(Received 15 August 1967)

Bis(acetylacetonato)zinc(II), Zn(AcAc)₂, may be sublimed to give white monoclinic crystals containing the trimer, [Zn(AcAc)₂]₃. The unit cell dimensions are $a=18\cdot63$, $b=8\cdot437$, $c=12\cdot20$ Å, $\beta=112\cdot68^{\circ}$; measured density, 1·41 g.cm⁻³; calculated density for Z=2, 1·45 g.cm⁻³. Space group: C2. The structure was solved, including hydrogen atoms and refined by least squares to a conventional residual of 2·6% using 1835 non-zero reflections measured with a counter diffractometer. The trimer contains a central octahedrally coordinated zinc atom, lying on the crystallographic twofold axis, and two terminal pentacoordinated zinc atoms. The coordination geometry about the terminal zinc atoms is closer to a trigonal bipyramidal than to a square pyramidal arrangement. Both the octahedron and the trigonal bipyramids show considerable distortions from their ideal geometries, with mean angular deviations of $8\cdot2^{\circ}$ and $5\cdot3^{\circ}$ respectively. Each terminal zinc atom is connected to the central one by two shared oxygen atoms, one at an axial and the other at an equatorial position of the trigonal bipyramid. The absolute configuration of the trimer for the crystal studied was determined by considering the anomalous dispersion of the zinc atoms.

Introduction

The fact that bis-(β -ketoenolato)metal(II) compounds of the first transition series metals (except copper) are coordinately unsaturated when monomeric, and thus either oligomerize or add donor ligands, is now well known. For the nickel (Bullen, Mason & Pauling, 1965) and cobalt (Cotton & Elder, 1965, 1966; Cotton & Eiss, 1968) acetylacetonates, there are extensive X-ray crystallographic data available, while for others there

904